Exercise 33

An integral equation is an equation that contains an unknown function $y(x)$ and an integral that involves $y(x)$. Solve the given integral equation. [Hint: Use an initial condition obtained from the integral equation.]

$$
y(x)=2+\int_{2}^{x}[t-t y(t)] d t
$$

Solution

Right away we see that if we plug in $x=2$ to the integral equation, we get

$$
\begin{aligned}
y(2) & =2+\int_{2}^{2}[t-t y(t)] d t \\
& =2+0 \\
& =2,
\end{aligned}
$$

so the initial condition is $y(2)=2$. In order to solve for $y(x)$ by the method introduced in this section, differentiate both sides of the integral equation with respect to x.

$$
\frac{d}{d x} y(x)=\underbrace{\frac{d}{d x}}_{=0} 2+\frac{d}{d x} \int_{2}^{x}[t-t y(t)] d t
$$

By the fundamental theorem of calculus,

$$
\frac{d}{d x} \int_{2}^{x}[t-t y(t)] d t=x-x y(x)
$$

so the differential equation we need to solve is the following.

$$
\frac{d y}{d x}=x-x y=x(1-y)
$$

This is a separable equation, which means we can solve for $y(x)$ by bringing all terms with y to the left and all constants and terms with x to the right and then integrating both sides.

$$
\begin{aligned}
d y & =x(1-y) d x \\
\frac{d y}{1-y} & =x d x \\
\int \frac{d y}{1-y} & =\int x d x
\end{aligned}
$$

Use a u-substitution to solve the integral on the left.

$$
\begin{aligned}
& \text { Let } \begin{aligned}
& u=1-y \\
& d u=-d y \rightarrow \quad-d u=d y \\
& \int \frac{-d u}{u}=\int x d x \\
& \ln |u|=-\frac{1}{2} x^{2}+C \\
& e^{\ln |u|}=e^{-\frac{1}{2} x^{2}+C} \\
&|1-y|=e^{-\frac{1}{2} x^{2}} e^{C} \\
& 1-y= \pm e^{C} e^{-\frac{1}{2} x^{2}}
\end{aligned}
\end{aligned}
$$

Let $C_{1}= \pm e^{C}$. Then

$$
y(x)=1-C_{1} e^{-\frac{1}{2} x^{2}}
$$

Now we use the initial condition, $y(2)=2$ to determine C_{1}.

$$
\begin{aligned}
y(2)=1-C_{1} e^{-\frac{1}{2} 2^{2}} & =2 \\
1-C_{1} e^{-2} & =2 \\
-\frac{C_{1}}{e^{2}} & =1 \\
C_{1} & =-e^{2}
\end{aligned}
$$

Therefore,

$$
y(x)=1+e^{2} e^{-\frac{1}{2} x^{2}}
$$

